INDUCTION MOTOR FAULT DIAGNOSTIC AND MONITORING METHODS by Aderiano
نویسندگان
چکیده
Induction motors are used worldwide as the “workhorse” in industrial applications. Although, these electromechanical devices are highly reliable, they are susceptible to many types of faults. Such fault can became catastrophic and cause production shutdowns, personal injuries, and waste of raw material. However, induction motor faults can be detected in an initial stage in order to prevent the complete failure of an induction motor and unexpected production costs. Accordingly, this thesis presents two methods to detect induction motor faults. The first method is a motor fault diagnostic method that identifies two types of motor faults: broken rotor bars and inter-turn short circuits in stator windings. These two types of faults represent 40 to 50% of all reported faults. Moreover, this method identifies the motor fault’s severity through the identification of the number of broken bars and the number of turns involved in an interturn short. The second method is a motor fault monitoring method that classifies the operating condition of an induction motor as healthy or faulty. The faulty condition represents any number of broken bars. This method has two major advantages. First, this is a robust technique, which is trained with datasets generated by time-stepping finite element methods in order to monitor faults of real induction motors in operation. Thus, the high cost associated with destructive tests to generate the training sets is not required. Second, it will be demonstrated here that this method, which is trained with simulated data of only one motor, can be used to monitor faults of real motors even with different design specifications. This establishes the scalability of this method. Both methods are validated through experimental tests.
منابع مشابه
Health Monitoring and Fault Diagnosis in Induction Motor- A Review
Induction motor especially three phase induction motor plays vital role in the industry due to their advantages over other electrical motors. Therefore, there is a strong demand for their reliable and safe operation. If any fault and failures occur in the motor it can lead to excessive downtimes and generate great losses in terms of revenue and maintenance. Therefore, an early fault detection i...
متن کاملA Hybrid Intelligent Technique for Induction Motor Condition Monitoring
The objective of this research is to advance the field of condition monitoring and fault diagnosis for induction motors. This involves processing the signals produced by induction motors, classifying the types and estimating the severity of induction motors faults. A typical process of condition monitoring and fault diagnosis for induction motors consists of four steps: data acquisition, signal...
متن کاملA Vibration-Based Approach for Stator Winding Fault Diagnosis of Induction Motors: Application of Envelope Analysis
Induction motors are usually considered as one of the key components in various applications. To maintain the availability of induction motors, it calls for a reliable condition monitoring and prognostics strategy. Among the common induction motor faults, stator winding faults are usually diagnosed with current and voltage signals. However, if the same performance can be achieved, the use of vi...
متن کاملArtificial intelligence methods in diagnostics of analog systems
The paper presents the state of the art and advancement of artificial intelligence methods in analog systems diagnostics. Firstly, the diagnostic domain is introduced and its problems explained. Then, computational intelligence approaches usable for fault detection and identification are reviewed. Particular groups of methods are presented in detail, explaining their usefulness and drawbacks. E...
متن کاملNumerical magnetic field analysis and signal processing for fault diagnostics of electrical machines
Numerical magnetic field analysis is used for predicting the performance of an induction motor and a slip-ring generator having different faults implemented in their structure. Virtual measurement data provided by the numerical magnetic field analysis are analysed using modern signal processing techniques to get a reliable indication of the fault. Support vector machine based classification is ...
متن کامل